Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Vaccine ; 41(6): 1239-1246, 2023 02 03.
Article in English | MEDLINE | ID: covidwho-2184284

ABSTRACT

AIMS: To examine influenza vaccination coverage among risk groups (RG) and health care workers (HCW), and study social and demographic patterns of vaccination coverage over time. METHODS: Vaccination coverage was estimated by self-report in a nationally representative telephone survey among 14919 individuals aged 18-79 years over seven influenza seasons from 2014/15 to 2020/21. We explored whether belonging to an influenza RG (being >=65 years of age and/or having >=1 medical risk factor), being a HCW or educational attainment was associated with vaccination status using logistic regression. RESULTS: Vaccination coverage increased from 27 % to 66 % among individuals 65-79 years, from 13 % to 33 % among individuals 18-64 years with >=1 risk factor, and from 9 % to 51 % among HCWs during the study period. Being older, having a risk factor or being a HCW were significantly associated with higher coverage in all multivariable logistic regression analyses. Higher education was also consistently associated with higher coverage, but the difference did not reach significance in all influenza seasons. Educational attainment was not significantly associated with coverage while coverage was at its lowest (2014/15-2017/18), but as coverage increased, so did the differences. Individuals with intermediate or lower education were less likely to report vaccination than those with higher education in season 2018/19, OR = 0.61 (95 % CI 0.46-0.80) and OR = 0.58 (95 % CI 0.41-0.83), respectively, and in season 2019/20, OR = 0.69 (95 % CI 0.55-0.88) and OR = 0.71 (95 % CI 0.53-0.95), respectively. When the vaccine was funded in the COVID-19 pandemic winter of 2020/21, educational differences diminished again and were no longer significant. CONCLUSIONS: We observed widening educational differences in influenza vaccination coverage as coverage increased from 2014/15 to 2019/20. When influenza vaccination was funded in 2020/21, differences in coverage by educational attainment diminished. These findings indicate that economic barriers influence influenza vaccination decisions among risk groups in Norway.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , Aged , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Vaccination Coverage , Pandemics , Vaccination , Norway/epidemiology , Health Personnel , Demography
3.
J Infect Dis ; 226(11): 1924-1933, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2077787

ABSTRACT

BACKGROUND: Understanding how booster vaccination can prevent moderate and severe illness without hospitalization is crucial to evaluate the full advantage of mRNA boosters. METHODS: We followed 85 801 participants (aged 31-81 years) in 2 large population-based cohorts during the Omicron BA.1/2 wave. Information on home testing, PCR testing, and symptoms of coronavirus disease 2019 (COVID-19) was extracted from biweekly questionnaires covering the period 12 January 2022 to 7 April 2022. Vaccination status and data on previous SARS-CoV-2 infection were obtained from national registries. Cox regression was used to estimate the effectiveness of booster vaccination compared to receipt of 2-dose primary series >130 days previously. RESULTS: The effectiveness of booster vaccination increased with increasing severity of COVID-19 and decreased with time since booster vaccination. The effectiveness against severe COVID-19 was reduced from 80.9% shortly after booster vaccination to 63.4% in the period >90 days after vaccination. There was hardly any effect against mild COVID-19. The effectiveness tended to be lower among subjects aged ≥60 years than those aged <50 years. CONCLUSIONS: This is the first population-based study to evaluate booster effectiveness against self-reported mild, moderate, and severe COVID-19. Our findings contribute valuable information on duration of protection and thus timing of additional booster vaccinations.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , RNA, Messenger , SARS-CoV-2/genetics , Vaccination
4.
Microorganisms ; 9(11)2021 Nov 17.
Article in English | MEDLINE | ID: covidwho-1524078

ABSTRACT

We studied the secondary attack rate (SAR), risk factors, and precautionary practices of household transmission in a prospective, longitudinal study. We further compared transmission between the Alpha (B.1.1.7) variant and non-Variant of Concern (non-VOC) viruses. From May 2020 throughout April 2021, we recruited 70 confirmed COVID-19 cases with 146 household contacts. Participants donated biological samples eight times over 6 weeks and answered questionnaires. SARS-CoV-2 infection was detected by real-time RT-PCR. Whole genome sequencing and droplet digital PCR were used to establish virus variant and viral load. SARS-CoV-2 transmission occurred in 60% of the households, and the overall SAR for household contacts was 50%. The SAR was significantly higher for the Alpha variant (78%) compared with non-VOC viruses (43%) and was associated with a higher viral load. SAR was higher in household contacts aged ≥40 years (69%) than in younger contacts (40-47%), and for contacts of primary cases with loss of taste/smell. Children had lower viral loads and were more often asymptomatic than adults. Sleeping separately from the primary case reduced the risk of transmission. In conclusion, we found substantial household transmission, particularly for the Alpha variant. Precautionary practices seem to reduce SAR, but preventing household transmission may become difficult with more contagious variants, depending on vaccine use and effectiveness.

SELECTION OF CITATIONS
SEARCH DETAIL